13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловой насос самостоятельно

МирТесен

Тепловой насос для отопления дома своими руками

В отличие от таких устройств альтернативной энергетики, как солнечная батарея и ветрогенератор, тепловой насос менее известен.

Немного теории

Использовать природное тепло земли для обогрева жилья проще всего при наличии в регионе геотермальных вод (как это делают в Исландии). Но такие условия большая редкость.

И в то же время тепловая энергия есть везде — надо только ее извлечь и заставить работать. Для этого и служит тепловой насос. Что он делает:

  • отбирает энергию у низкотемпературных природных источников;
  • аккумулирует ее, то есть поднимает температуру до высоких значений;
  • отдает ее теплоносителю системы отопления.

В принципе, используется стандартная схема компрессорного холодильника, но «наоборот». В первом контуре циркулирует природный теплоноситель. Он замкнут на теплообменник, выполняющий функцию испарителя для второго контура.

1 — земля; 2 — циркуляция рассола; 3 — циркуляционный насос; 4 — испаритель; 5 — компрессор; 6 — конденсатор; 7 — система отопления; 8 — хладагент; 9 — дроссель

Второй контур — это и есть сам тепловой насос, внутри которого находится фреон. Цикл теплового насоса состоит из следующих этапов:

  1. В испарителе фреон нагревается до температуры кипения. Она зависит от типа фреона и давления в этой части системы (обычно до 5 атмосфер).
  2. В газообразном состоянии фреон поступает в компрессор и сжимается до 25 атмосфер, при этом его температура растет (чем больше сжатие, тем выше температура). Это и есть фаза аккумуляции тепла — из большого объема с низкой температурой переход в малый объем с высокой температурой.
  3. Нагретый давлением газ поступает в конденсатор, в котором происходит передача тепла теплоносителю системы отопления.
  4. После охлаждения фреон попадает в дроссель (он же регулятор потока или терморегулирующий вентиль). В нем давление падает, фреон конденсируется и в виде жидкости возвращается в испаритель.

Где лучше «отбирать» тепло

Принципиально есть три среды, из которых можно «отобрать» тепло:

1. Воздух. При нормальном давлении все типы фреонов закипают при отрицательных температурах (например, R22 — около -25 °C, R404 и R502 — около -30 °C). Но для циркуляции в системе надо создать избыточное давление уже на первой фазе — испарении. Те же 4 атмосферы в испарителе требуют, чтобы температура воздуха на улице была не ниже 0 °C для R22 и -5 °C для R404 и R502. В наших регионах этот тип теплового насоса можно использовать для отопления в межсезонье и для горячего водоснабжения в теплое время года.

2. Вода. Это более стабильный источник тепла, при условии, что водоем зимой не промерзает до дна. Но дом должен не просто находиться рядом с озером или рекой, а быть на первой линии.

3. Земля. Самый стабильный источник тепловой энергии. Можно использовать две схемы — горизонтальную и вертикальную. Горизонтальная кажется проще тем, что не требует бурения. Но придется проделать большой объем земляных работ по рытью системы траншей на глубину ниже уровня промерзания грунта (для средних широт он колеблется от 1 метра на западе европейской части страны и до 1,6–1,8 ближе к Уралу, в Сибири ситуация «еще хуже». Вертикальная схема более универсальна и эффективна, но требует бурения на значительную глубину. Хотя можно использовать несколько неглубоких скважин вместо одной глубокой.

Принципиальная схема

Сама схема теплового насоса несложная: испаритель — компрессор — конденсатор — дроссель — испаритель.

«Сердце» схемы — это компрессор. Можно купить новый, но дешевле подыскать б/у. Естественно, речь идет не о маломощных компрессорах бытовых холодильников, а о моделях, устанавливаемых в сплит-системах. Ориентироваться надо не на потребляемую мощность, а на мощность в режиме обогрева (которая выше чем в режиме охлаждения на 5–20%).

Выбирают модель компрессора по соотношению 1 кВт на 10 кв. метров отапливаемой площади.

Внимание! Может указываться мощность не только в кВт, но и в BTU (английская единица измерения тепловой энергии, принятая для климатической техники). Пересчет сделать просто — значение в BTU разделить на 3,4.

Читать еще:  Составить план участка самостоятельно программа

При расчете параметров теплонасоса, в том числе теплообменников, используют программное обеспечение, предназначенное для моделирования, расчетов и оптимизации систем охлаждения, например, CoolPack

Уже на стадии расчетов (а точнее, при задании «вводных») можно оптимизировать систему, выбрав оптимальные тепловые режимы.

Использование теплового насоса эффективно для низкотемпературных систем отопления, например, для теплых полов с температурой не выше 35–40 °C. Кстати, эта же температура рекомендована по медицинским требованиям для системы ГВС.

Для каждого типа фреона есть оптимальные температуры «входа» и «выхода», точнее, кипения и конденсации, но разница у всех них не более 45–50 °C.

Казалось бы, увеличение температуры на выходе теплового насоса даст положительный эффект, но это не так. Будет расти и разница температур, что приведет к снижению COP (коэффициента преобразования, или КПД тепловой машины). Кроме того, для этого потребуется использование более мощного компрессора и дополнительный расход электроэнергии.

Идеального COP достичь не получится (потери в компрессоре, расход электроэнергии, потери тепла при транспортировке внутри системы и т. п.), поэтому реальные значения обычно лежат в пределах от 3 до 5.

Есть еще один способ повышения эффективности — использование бивалентной схемы отопления.

В реальности работа системы отопления в полную мощность нужна лишь на протяжении 15–20% всего сезона. На это время можно использовать дополнительные отопительные устройства (например, керамический обогреватель или конвектор). Уменьшение расчетной тепловой мощности до 80% позволит сэкономить на компрессоре, уменьшить глубину скважины или длину труб горизонтальной схемы, снизить расход электроэнергии на обслуживание самого теплового насоса.

От заданной номинальной мощности теплового насоса и COP зависит расчет горизонтального или вертикального грунтового теплообменника. В среднем с каждого метра «горизонта» снимают 20 Вт (при шаге укладки труб не менее 0,7 м), а с «вертикали» — 50 Вт. Но конкретные значения зависят от вида породы и ее влажности. Лучшие значения у грунтовых вод.

Интересно! Есть и другие грунтовые теплообменники — «спираль» или «корзина». По сути, это вертикальный зонд из трубы в виде спирали, что позволяет снизить глубину бурения.

После определения длины горизонтального контура или глубины вертикального зонда рассчитывают размеры испарителя и конденсатора.

Изготовление испарителя и конденсатора

Можно купить уже готовые теплообменники как для испарителя (под низкое давление), так и для конденсатора (с давлением до 25 бар). Но дешевле их изготовить из медной трубки для кондиционеров (которая предназначена именно для работы с хладагентами при высоком давлении) и подручных емкостей.

Важно! Сантехническая медная труба не такая «чистая» и гибкая. Ее хуже паять и вальцевать при монтаже.

Рассчитывают площадь поверхности теплообменника, которая прямо пропорциональна мощности тепловыделения и обратно пропорциональна разнице температур теплоносителей на входе и выходе каждого подключаемого контура (грунтового и системы отопления).

Зная диаметр трубы и площадь поверхности, определяют длину каждого змеевика для испарителя и конденсатора.

Емкость для конденсатора лучше сделать из нержавейки (температура входящих паров фреона может быть довольно высокая):

  • взять готовый бак подходящей емкости (чтобы поместилась спираль из медной трубки);
  • разместить в нем змеевик (вход вверху, выход внизу);
  • вывести концы медной трубки для подключения к компрессору и ТРВ (пайкой или фланцем);
  • сделать в баке врезку переходников для подключения труб системы отопления;
  • заварить крышку.

Испаритель работает на более низких температурах, поэтому для него можно взять более дешевую пластиковую емкость, в которую врезают переходники для подключения к грунтовому контуру. Он также отличается от конденсатора расположением змеевика теплообменника — вход (жидкая фаза фреона от ТРВ) снизу, выход на компрессор сверху.

Монтаж схемы

После изготовления теплообменников производят сборку газогидравлической схемы:

  • устанавливают по месту компрессор, конденсатор и испаритель;
  • паяют или соединяют на фланец медные трубы;
  • подключают испаритель к насосу грунтового контура;
  • подключают конденсатор к системе отопления.

1 — циркуляционный насос грунтового контура; 2 — испаритель; 3 — выход грунтового контура; 4 — терморегулирующий вентиль; 5 — компрессор; 6 — к системе отопления; 7 — конденсатор; 8 — обратка системы отопления

Читать еще:  Системы видеонаблюдения самостоятельная установка

Электрическая схема (компрессор, насос грунтового контура, аварийная автоматика) должна подключаться по выделенной цепи, которая обязана выдерживать довольно высокие пусковые токи.

Обязательно использовать автомат защиты, а также аварийное отключение от реле температуры: на выходе воды из конденсатора (при перегреве) и выходе рассола из испарителя (при переохлаждении).

Тепловой насос воздух-вода своими руками – часть 1

Почему тепловой насос вместо газа: подготовка, сборка

При необходимости альтернативой голубому топливу может стать не только твердотопливный котел с теплоаккумулятором, но и тепловой насос. Хотите сэкономить на газификации? FORUMHOUSE предлагает историю от пользователя с ником batt87, который отапливает дом самодельным тепловым насосом, вместо того, чтобы провести газ.

Почему, несмотря на газификацию СНТ, не получается подключиться

Живу в СНТ в пригороде Краснодара 3-ий год, газа нет, электричество по обычному тарифу 5,38 руб. день и 2,89 руб. ночь. Сначала расскажу про газ.

У нас в СНТ уже есть проект по газификации нашего и соседних СНТ и тех. условия на подключение к существующей ГРП (газораспределительная подстанция) в 2 км от нас. Стоимость проекта на сегодняшний день 1 млн. руб., мы его делали лет 5 назад, вместе с соседними СНТ, в итоге вышло по 3000 руб. с человека, т. е. из 2000 участков, что фигурируют в проекте, сдали деньги на проект 300 человек.

Сейчас нам приблизительно посчитали газовики сколько будет стоить монтаж трубопровода и установка ГРП у нас в СНТ, в итоге вышло около 8 млн. руб., если создать группу из тех же 300 чел., а у нас, напомню, в проект на газификацию 2000 участков, получится с каждого 8 млн/300 чел=27 т. р., округлим до 30 т. р. После установки ГРП, нам нужно будет «кидать» трубы по улицам и выводить краны на каждый участок, это вторая часть газификации, тут уже, скорее всего желающих поучаствовать увеличится, и на каждый 1 км. улицы думаю найдем по 50 желающих вывести ГАЗовый вентиль на свой участок. По деньгам будет чуть дешевле: 6 млн. на 2 км., получается 6 млн/100 чел=60 т. р. Уже 60+30=90 т. р., округлим до 100 т. р. В принципе, отличная цена, чтобы завести газ на свой участок.

Но вот последняя часть ГАЗификации с заводом трубы в дом, а это около 30 м трубы, убивает все инициативы. Т. к. 100 т. р. ГОРГАЗ просто забирает как взятку под видом всякой не нужной чепухи, без которой ГАЗовый вентиль в Вашем доме не откроют. Например, требуют установку счетчика за 10 т. р., вместо 2,5 т. р., согласование проекта стоит 10 т. р., хотя должно быть 0 руб. Работы по монтажу 30 метров трубы предлагают выполнить «проверенными» ребятами, у которых цена на материал и работы завышена минимум в 2 раза. Когда работа+материал должны стоить 50-60 т. р., вам считают 100-120 т. р.

Когда уже все готово и проплачено, приходят 3 разных человека от ГОРГАЗа для ввода вашего куска трубы (30 метров) в эксплуатацию (трубу проверить, котел проверить, краны проверить, проект проверить и т. д.), и это еще стоит 30 т. р. Хотя монтаж делали их «проверенные» ребята и все акты и испытания обязательны при сдаче подрядчиком своих работ, в итоге переплата 10+60+30=100 т. р.

Уже набежало 100 (труба)+80 (в дом)+100 (взятки)=280 т. р., это много, и вряд ли с такими цифрами мы наберем из 2000 чел и 200 чел. Поэтому я понял, что ГАЗа нам лет 5-10 не видать.

Параметры дома

Дом 7х12 м., двухэтажный, из бутового кирпича, пирог стены: полкирпича/воздух 3-4 см./полтора кирпича/штукатурка+краска. Полы – плитка.

Отопление теплыми полами, без батарей, на каждый этаж по 8 контуров теплого пола. Полы, напомню, плитка, под теплым полом экструдированный пенополистирол.

Отопление электрокотлом ЭВАН 9 кВт 220 В и сплит: две системы на первом этаже, фирмы LESSAR на 9K BTU и 12K BTU не инвертор.

Читать еще:  Сварка научится самостоятельно

Веду статистику в EXCEL по затратам на эксплуатацию дома, люблю все считать, проверять и держать под контролем.

Разработка концепции, комплектующие, чертежи

Давно хотел попробовать собрать теплообменник фреон-вода вместо внутреннего блока сплита.

Почему сплит, потому что сплиты сейчас настолько дешево стоят, что рабочий Б/У внешний блок 48000 BTU можно найти за 10000 руб., это подталкивает на эксперименты.

Летом 2019 начал поиски «донора» для теплового насоса, искал минимум 24000 BTU рабочий внешний блок, но летом цены на сплиты немного дороже и выбора не так много, как в межсезонье. В итоге нашел новый сплит из Леруа, Monlan 12К BTU с пробитым внутренним блоком за 8000 руб. (новый стоит 13000 руб.)

Корпус внутреннего теплообменника решил делать из металлического газового баллона 50 л., купил его так же в Леруа за 2500 руб., летом баллоны дешевле на 500 руб., зимой он же стоит 2999 руб.

Нашел магазин в Краснодаре с оборудованием для холодильной техники и купил там соответствующую моему сплиту медную трубу 3/8” 15 метров (2500 руб.) и 1/4” 15 метров (1500 руб.) и всяких уголков и редукций для пайки на эти трубы (они не дорогие, по 20-30 руб. каждая). Там же купил электрод с серебром для пайки медных труб (200 руб.) и самый дешевый электрод (50 руб.) для пайки для тренировки, паять медные трубы ни разу не пробовал. Фитинги для баллона брал в Леруа из обычной стали, они все около 50 руб. стоят.

Сборка системы с тепловым насосом

• Убаллона фортункой срезал горлышко с краном, чтоб отверстие было 160 мм., сам баллон в диаметре 28-30 см.

• Сделал отверстия под сварку сгонов 1” 4 шт., для подключения в существующую систему отопления (типа гидрострелки получилось, поищите в поиске, что это такое, для чего и как работает).

• Сделал отверстия под сварку сгонов 1/2” 3 шт., снизу баллона, 1 по центру в самой нижней части, для слива шлака, и 2 отверстия для вывода медной трубы.

• Друг сварщик приварил сверху фланец стальной с внутренним диаметром 160мм и из куска стали толщиной в 10 мм, резаком вырезал крышку.

• Также друг приварил все сгоны.

• В крышке были просверлены отверстия под болты 8 шт, соосно с отверстиями на фланце.

• Внутри баллона все побрызгал ортофосфорной кислотой и где достал рукой, почистил металлической щеткой, после окрасил, грунт-краской по металлу от ржавчины, все места внутри баллона и все сгоны внутри, также прокрасил.

• Скрутил из медной трубки 3/8” змеевик вокруг обычной канализационной трубы 110 мм., трубы 3/8 ушло 10 м.

• Скрутил из медной трубки 1/4” змеевик вокруг той же канализационной трубы 110 мм., трубы 1/4 ушло 5 м.

• Припаял редукцию медную с 3/8 на 1/4, и припаял два медным змеевика, получилась одна пружина из медной трубки, высотой прям под крышку баллона (на схеме сверху нарисовано, как змеевик сделан). На будущее, пайку лучше делать потом, снаружи баллона, а змеевик делать полностью из трубы 3/8”, так точно не будет протечек фреона внутри баллона и ремонтировать будет намного легче.

• К баллону приварил металлические профили, купленные в Леруа, чтобы его повесить на стену.

Потом листая странички в интернете, наткнулся на нашу Краснодарскую фирму «Теплотехника», которая продавала с ОГРОМНОЙ скидкой тепловой насос воздух/вода на инверторном компрессоре, мощностью 5 кВт по теплу, я забронировал его в интернете и оплатил (50 т. р.), с небольшими трудностями по бухгалтерии мне его отдали.

В итоге: у меня 1 тепловой насос заводского исполнения и 1 тепловой насос я делаю сам. Котельная у меня очень маленькая, так что все плотненько, но поместилось .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector